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1. Statement of the problem studied 
The novelty of the approach is in the use of carbon nanotube based multifunctional composites which 

integrate self-sensing function to structural components and can monitor damage initiation and 
propagation, and elucidate the nature and extent of damage. The objectives have been accomplished 
through integrated and complementary analytical and experimental studies.  

The innovative features of the project include: (a) The processing of SC-15 epoxy based glass fiber 
composites with highly uniform dispersion of carbon nanotubes as electrical conductive network; (b) The 
characterization of damage sensing capability of the hybrid composite under static and dynamic 
loading, and (c) The capability in analysis/modeling of 3D electrical percolation behavior and the 
evolution of damage with deformation. 
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2. Significance 
       The significance of the research is in the development of technologically advanced materials for 
armor protection with improved damage tolerance and lower areal density. 

       The materials typically used in composite armor backing plates are composed of 2-D and 3-D textile 
fabrics infused with a toughened epoxy matrix. These materials pose fundamental challenges for in situ 
sensing. First, the toughened epoxies may undergo phase separation and produce a barrier toward the 
development of a percolating network of carbon nanotubes. In addition, the textile structure, whether it is 
a 2-D plain weave fabric or a 3-D orthogonal weave, adds microstructural complexity which will have a 
substantial impact on the measured resistance change. 

       Eventual defense and/or industrial usage may be found in multifunctional applications including 
advanced composite armor, electromagnetic shielding and electrostatic discharge.  

 

3. Summary of the most important results 
3.1 Novel Approach of Carbon Nanotube Network Formation and Their Sensing of Damage [1,2,3] 

Carbon nanotube/SC-15 epoxy composites were processed using both calendering and fiber sizing 
approaches. In the calendering method, a three-roll mill was used to disperse nanotubes in the resin prior 
to infusion. Glass fibers were treated with a fiber sizing agent containing carbon nanotubes using 
VARTM before resin infusion. We found that both methods achieved electrical percolation however the 
fiber sizing agent was able to better distribute the nanotubes within the thick-section fabric preforms due 
to its significantly lower viscosity. A microstructural analysis of these carbon nanotube/UD S-2 glass 
fiber/SC-15 epoxy composites has been performed and the result has been published (Fig. 1). 

Fig. 1 Carbon nanotube deposited on the surface of glass fibers using a carbon nanotube sizing agent 
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Fig. 2a. Resistance increase during impact shows 
elastic deformation and new impact damage 

Fig. 2b. Comparative study of resistance change and 
damage area (measured by ultrasonic C-scan) and 
absorbed energy 

      Research into the dynamic behavior of these composites was performed using an Instron Datup 8250 
drop-weight impact testing machine. During these experiments, specimens were impacted multiple times 
with energies of 70 J. After each successive impact, resistance increases are related with damage area and 
absorbed energy (Fig. 2a and 2b). 

3.2 Modeling the Electrical Percolation Threshold of the Carbon Nanotube Network [4] 

      A three-dimensional model of carbon nanotube networks was developed and implemented to evaluate 
the role of intertube van der Waals interactions and electrical tunneling on electrical percolation (Fig. 3a 
and 3b).  

      Through this study, we reveal that van der Waals interactions and tunneling play a significant role in 
the electrical percolation threshold of a network of low aspect ratio carbon nanotubes (Fig. 4a). In the 
case of a high aspect ratio network, these two interactions become less significant. Carbon nanotube 
waviness is also shown to have a strong effect on electrical percolation; the threshold increases gradually 
with the maximum nanotube deviation angle (Fig. 4b). Through these simulations, a better understanding 
of percolation in nanotube networks is obtained and processing methods can be adjusted in order to 
achieve electrical percolation with even lower nanotube volume fractions. 

Fig. 3a. A wavy CNT with deviation angle max Fig. 3b. A 3D simulation cell of wavy CNTs with 
N=10 (per CNT) and max= 30o. 
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Fig. 4a. Electrical percolation threshold of 
nanocomposites with straight CNTs vs. CNT aspect 
ratio 

Fig. 4b. The effect of maximum nanotube 
deviation angle on nanocomposite percolation 
thresholds. 

 
3.3 Dynamic Behavior - Split Hopkinson Pressure Bar (SHPB) Loading Response [5] 

       Carbon nanotube/SC-15 epoxy composites were processed using a carbon nanotube fiber sizing agent 
prior to resin infusion. Both the sizing agent and epoxy resin were applied using VARTM methodology. 
In order to evaluate the response of thick-section composites (0.35 in/8.9 mm) under dynamic 
compression loading, 45º off-axis specimens were prepared (Fig. 5).  

 
Fig. 5.  Composite specimens with  electrodes (white and red wires) used in SHPB evaluation 

       A single specimen was impacted multiple times at increasing impact energy (analogous to striker bar 
impact velocity). Evidence of progressive damage is seen in the mechanical (Fig. 6a) and electrical (Fig. 
6b) response of the composite. Large-scale delamination occurs during the sixth impact; the result is a 
further decline in stiffness and drastic increase in electrical resistance. 



5 
 

Fig. 6a.  Mechanical response to multiple impacts for a 
single specimen. Specimen stiffness decreases after 
each successive impact, beginning with the third.  

Fig. 6b.  Electrical resistance (acquired at 15 
Hz) shown throughout loading sequence. 
Increases in unloaded resistance after impact 
are indicative of microscale damage 
development. 

 

Fig. 7a.  Change in baseline resistance vs. striker 
bar impact velocity, VE. Numbers indicate impact 
sequence.  

Fig. 7b.  Optical micrograph of the impacted surface 
showing cracks throughout the composite matrix. 

 
       Resistance increases exponentially with striker bar impact velocity (Fig. 7a), indicating that damage 
has occurred progressively as impact energy increases. Evidence of damage, which occurs in the form of 
microcracking and delamination is shown in Fig. 7b. 
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      Current efforts into characterizing the 
dynamic response of carbon nanotube-based 
E-glass/epoxy composites include acquiring 
electrical data in real-time (5 MHz). This 
will allow for the correlation of stress-strain 
response during loading (which occurs in 
<300 µs) with electrical resistance changes, 
providing more insight into the development 
of damage during Hopkinson bar loading. 

      The mechanical and electrical behavior 
of a specimen loaded within its linear elastic 
regime is plotted in Fig. 8. Resistance 
increases during loading due to Poisson-like 
radial expansion, caused by the applied axial 
compression. Since electrical resistance is 
measured across the specimen diameter, 
resistance increases during loading. This 
increase is temporary since the specimen is 
not damaged permanently. 

 
3.4 Analysis and Modeling of Carbon Nanotubes [6, 7] 

       Entanglements in carbon nanotube fibers and play a crucial role in affecting their mechanical 
properties. In this study, the carbon nanotube entanglement is modeled as two connecting, self-folded 
carbon nanotubes. At large aspect ratios, it is energetically favorable for a nanotube to be self-folded due 
to the van der Waals interactions between different parts of the nanotube. The geometrical characteristics 
of self-folded carbon nanotubes (SFCNTs), such as the critical length for self-folding as well as the 
critical effective width and length, are investigated by using both an exact theoretical model and an 
approximate theoretical model (Fig. 9). The tensile properties of the SFCNTs have been examined by 
using both the approximate theoretical model and atomistic simulations. Good agreement is observed in 
the results of these two approaches (Fig. 10). 

 

Fig. 9a.  Schematic diagram of a SFCNT (5,5) with 
a length of 300 nm, obtained using atomistic 
simulations and two theoretical models. 

Fig. 9b.  Tension-induced deformation of a SFCNT 
(5,5). 
 

 

 

Fig. 8.  Stress and electrical resistance (both acquired at 
5 MHz) plotted vs. time during a single SHPB loading. 

100 200 300 400
0

10

20

30

 
 (

M
P

a)

t  (s)

 

loading

unloading

4

5

6

7

8

9

10

11

 R

 R
  (k


)



7 
 

 
Fig. 10.  Predicted load-strain behavior of a SFCNT (5,5) obtained via approximate theoretical analysis 

and atomistic simulation. 
 
       The radial deformation (Fig. 11) of a carbon nanotube plays a significant role in affecting its 
mechanical and electrical behavior. In this study, both atomistic simulations and continuum analysis are 
adopted to study the structural transformations and their related energy variations during the radial 
deformation of single-walled CNTs (SWCNTs).  

  It has been found that for SWCNTs with radius larger than 1.05 nm, they would collapse under 
radial deformations. The larger the SWCNT radius, the easier it will collapse. For SWCNTs with radius 
larger than 1.90 nm, the collapsed states are more stable than their initial, undeformed states. These 
different behaviors are due to the variation of contributions from the bending strain energy and the van 
der Waals interaction energy between opposite walls of the SWCNT to the total energy. The energy 
barrier for the collapse of SWCNTs decreases with increasing SWCNT radius (Fig. 12a), and their 
relationship is represented by a simple formula. The relationship between the energy difference (the 
energy variation between the collapsed state and the initial circular state) and SWCNT radius is also 
obtained (Fig. 12b) and represented by a simple expression. 

 

Fig. 11a.  Schematic of the initial atomic structure 
of a carbon nanotube (20,20) with a length of 10.2 
nm. Red atoms are forced inward during radial 
deformation. 

Fig. 11b.  Radial deformation sequence of a (20,20) 
carbon nanotube shown along with collapsed 
(30,30) and (40,40) carbon nanotubes. 
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Fig. 12a.  Energy barrier and transition distance of 
different carbon nanotubes under radial 
deformation. Good agreement is seen between 
atomistic simulation and continuum analysis. 

Fig. 12b.  Energy difference and flat contact length 
of carbon nanotubes with different radii. Again, a 
strong correlation between the atomistic simulation 
and continuum analysis is observed. 

3.5 Carbon Nanotube Fiber:  Electromechanical Response and Failure Behavior [8, 9] 

      The electromechanical behavior of carbon nanotube fibers (Fig. 13), provided by Nanocomp 
Technologies, Inc., were evaluated under quasi-static tensile loading. These fibers consisted of single 
walled carbon nanotubes spun directly from an aerogel state and held together by entanglements and van 
der Waals interactions. The electrical and mechanical behavior of these fibers is provided in Table 1. 

 
 

Fig. 13.  Composite specimens with electrodes (white and red wires) used in SHPB evaluation 

Diameter, davg [µm] 57.3 ± 5.9 
Failure Load, Fmax [N] 0.49 ± 0.17 

Failure Strain, εmax 0.096 ± 0.021 
Strength, σUTS [GPa] 0.189 ± 0.052[a]

Modulus, E [GPa] 9.16 ± 2.53[a]

Conductivity, κ [S m-1] 5.1 ± 1.7 (104) 
Resistance, R [Ω] 67.5 ± 23.6 

Table 1.  Material properties of the aerogel-spun carbon nanotube fibers. 
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       The fibers exhibited piezoresistivity upon tensile loading, meaning that they can respond electrically 
to applied strain and failure. This research provides the foundation for embedding carbon nanotube fibers 
in composites - the fibers will deform with the composite fibers/matrix and will therefore experience 
measurable changes in electrical resistance consistent with applied strain. We hypothesize that, as the 
fibres undergo tensile strain, radial contact between individual carbon nanotubes may improve; however, 
the degree of axial nanotube-nanotube contact will decrease. This behavior gives rise to increases in 
electrical resistance observed during loading in Fig. 14. 

       Upon failure, the carbon nanotubes slide past each other, resulting in lower fiber strengths than the 
tensile strength of individual carbon nanotubes (Fig. 15). After failure, stress is reflected back through the 
fiber ends from the point of breakage as a compressive wave. We observed kinking to occur along the 
fiber length after failure in many cases, leading us to conclude that the compressive strength of the fiber is 
lower than the tensile strength. 

 
Fig. 14.  Typical resistance/stress-strain behavior during monotonic (left) and cyclic (right) tensile loading. 

 

 
 

Fig. 15. Failed end of the specimen. 
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       Following the analysis presented by Allen [10] in which it is assumed that the compressive wave is 
equal in magnitude to the tensile stress applied at failure, it was possible to identify a compressive 
strength in the range of 172-177 MPa. This behavior was confirmed through loop testing as well. 
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